Stouffer’s Test in a Large Scale Simultaneous Hypothesis Testing
نویسندگان
چکیده
In microarray data analysis, we are often required to combine several dependent partial test results. To overcome this, many suggestions have been made in previous literature; Tippett's test and Fisher's omnibus test are most popular. Both tests have known null distributions when the partial tests are independent. However, for dependent tests, their (even, asymptotic) null distributions are unknown and additional numerical procedures are required. In this paper, we revisited Stouffer's test based on z-scores and showed its advantage over the two aforementioned methods in the analysis of large-scale microarray data. The combined statistic in Stouffer's test has a normal distribution with mean 0 from the normality of the z-scores. Its variance can be estimated from the scores of genes in the experiment without an additional numerical procedure. We numerically compared the errors of Stouffer's test and the two p-value based methods, Tippett's test and Fisher's omnibus test. We also analyzed our microarray data to find differentially expressed genes by non-genotoxic and genotoxic carcinogen compounds. Both numerical study and the real application showed that Stouffer's test performed better than Tippett's method and Fisher's omnibus method with additional permutation steps.
منابع مشابه
The False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کاملSearching for Gene Sets with Mutually Exclusive Mutations
Cancer cells evolve through random somatic mutations. "Beneficial" mutations which disrupt key pathways (e.g. cell cycle regulation) are subject to natural selection. Multiple mutations may lead to the same "beneficial" effect, in which case there is no selective advantage to having more than one of these mutations. Hence we are interested in finding sets of genes whose mutations are approximat...
متن کاملCorrelation and Large-Scale Simultaneous Significance Testing
Large-scale hypothesis testing problems, with hundreds or thousands of test statistics “zi” to consider at once, have become familiar in current practice. Applications of popular analysis methods such as false discovery rate techniques do not require independence of the zi’s, but their accuracy can be compromised in high-correlation situations. This paper presents computational and theoretical ...
متن کاملAcceptance sampling for attributes via hypothesis testing and the hypergeometric distribution
This paper questions some aspects of attribute acceptance sampling in light of the original concepts of hypothesis testing from Neyman and Pearson (NP). Attribute acceptance sampling in industry, as developed by Dodge and Romig (DR), generally follows the international standards of ISO 2859, and similarly the Brazilian standards NBR 5425 to NBR 5427 and the United States Standards ANSI/ASQC Z1....
متن کاملTest Power Reduction by Simultaneous Don’t Care Filling and Ordering of Test Patterns Considering Pattern Dependency
Estimating and minimizing the maximum power dissipation during testing is an important task in VLSI circuit realization since the power value affects the reliability of the circuits. Therefore during testing a methodology should be adopted to minimize power consumption. Test patterns generated with –D 1 option of ATALANTA contains don’t care bits (x bits). By suitable filling of don’t cares can...
متن کامل